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Abstract
The phonon distribution function in a weakly anharmonic one-dimensional
chain in a thermal gradient is determined in the high temperature or,
equivalently, classical regime. Thermal relaxation is dominated by 4-phonon
scattering processes in this limit and these are treated using Peierls’ Boltzmann
equation approach. An analytical analysis of the Boltzmann equation for small
wave vector k shows that the distribution is singular and that this singularity
at k = 0 is of the form of an infinite sum of power law branch points with
powers that are rational and dense on the real axis above some critical value.
The value of the smallest discrete power implies that the thermal conductivity
is infinite in the thermodynamic limit. For finite systems, whenever 4-phonon
scattering is the dominant mechanism inhibiting energy transport, the thermal
conductivity will scale as (system length)2/5/(temperature)6/5.

PACS numbers: 02.30.Rz, 05.60.Cd, 44.10.+i, 63.22.+m

1. Introduction

There is a long history of interest in the thermal transport properties of one-dimensional arrays
of particles. Some of it stems from the Fermi, Pasta and Ulam puzzle (cf the review by Ford
[1]) of the lack of energy sharing between modes in small systems; there is also the allure of
the simplicity of one-dimensional systems compared to those in two and three. The review
by Lepri et al [2] shows that computer simulations have continued to play a significant role
in recent years while the theoretical work has been largely confined to making estimates of
scaling behaviour with system size, temperature, frequency, etc. There can be considerable
difficulty in relating the theory and simulation because in both cases one needs to know when
the results are in the appropriate asymptotic limit. Detailed calculations and explicit results
based on microscopic models can clearly provide guidance and the present paper is a first
step for the case of a nearly harmonic system that relaxes by 4-phonon scattering. Somewhat
surprisingly, one can get quite far in solving the Boltzmann equation for this problem by purely
analytic methods.
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Peierls’ derivation and description [3] of the phonon Boltzmann equation is now standard
textbook material (cf Peierls [4] or Lifshitz and Pitaevskii [5] and also Maradudin et al [6]
as a useful source for technical detail) and I will only record a few relevant formulae here to
establish notation. The specific model treated below is that of equal mass particles on a line
and interacting via nearest-neighbour forces. A crucial observation by Peierls is that energy
and (pseudo) momentum conservation prevents 3-phonon scattering processes from occurring
which reduces to zero the leading effect of cubic anharmonicity. Thus for understanding what
happens in the weak anharmonic limit one can take, without loss of generality, the model
classical Hamiltonian as the harmonic plus quartic

H =
∑

i

(
1

2
p2

i

/
m +

1

2
K2 δx2

i+
1
2

+
1

4
K4δx

4

i+
1
2

)
(1)

where the sum extends over the N particles in the chain with xi+N = xi while δx
i+

1
2

=
xi+1 − xi − a is the deviation of a nearest-neighbour pair from the equilibrium spacing a. The
equilibrium spacing can have no dynamical effect and the final formulae will be written to
be explicitly independent of it. Thus, for example, Fourier transforms are defined by particle
number rather than particle position resulting in N independent wave vectors kn = 2πn/N

on any interval of length 2π . The quantum-mechanical version of (1) in terms of phonon
annihilation and creation operators is

H =
∑

k

h/ωka
†
kak + (3/8N)h/2

(
K4

/
K2

2

) ∑
{k}

(ωk1ωk2ωk3ωk4)
1/2a

†
k1a

†
k2ak3ak4 (2)

where the sum over the four wave vectors in the last term is constrained by �ki = 0 mod 2π .
The phonon frequency

ωk = ωZB

∣∣sin 1
2k

∣∣, ωZB = 2(K2/m)1/2 (3)

has its maximum ωZB at the Brillouin zone boundary. It is this very simple form of ωk

that makes the calculations described below possible although the qualitative features of the
singularity structure of the results are almost certainly generic and dependent only on the fact
that the leading deviation of ωk from linearity is a term ∝ k3.

The Boltzmann equation for a steady-state situation is the equality of a rate of change
of a density due to transport with that due to collisions with the approximation that memory
effects are absent so that the collisions depend only on local conditions. For the situation of a
steady-state temperature gradient, one imagines the local densities to be that of phonon wave
packets whose size is large compared to their mean wavelength but small compared to their
collision mean free path. This requires that K4 in the Hamiltonian (1) or (2) be appropriately
small—a restriction I take as given in everything that follows. One need not actually construct
wave packets; it is legitimate to use the phonon occupation number nk as a proxy for the local
density and take the rate of change due to transport as uk∂nk/∂x provided one identifies uk

as the phonon group velocity, i.e. uk = dωk/dk. To linear order in the temperature gradient
one can rewrite the gradient ∂nk/∂x as ∂nk

∂T
· ∂T

∂x
and replace ∂nk/∂T by ∂eqnk/∂T where the

equilibrium density eqnk is the Bose factor 1/(exp(h/ωk/kBT ) − 1). The resulting transport
term is

uk∂nk/∂x = 1
2 cot 1

2k eqnk(
eqnk + 1)(h/ωk/kBT )2kB∇T/h/ (4)

where ∇T = (Ti+j −Ti)/j is the constant temperature gradient on a particle basis thus making
it independent of the lattice spacing a. The collision term in the Boltzmann equation is the
Fermi golden rule rate based on the second term in (2) and one can show that the only process
that is allowed by energy conservation is the scattering k + k3 ↔ k1 + k2. The difference
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between the scattering rate out of state k and into k depends on the phonon distribution nk and
vanishes if this distribution is the equilibrium eqnk . Standard practice is to write the deviation
from equilibrium in terms of a new function gk defined by

δnk = nk − eqnk = eqnk(
eqnk + 1)gk (5)

in which case the net collision rate to linear order in g is

Rk(g) = −(9/16π)h/2(K2
4

/
K4

2

) ∫
dk1

∫
dk2 ωkωk1ωk2ωk3

× eqnk
eqnk3(

eqnk1 + 1)(eqnk2 + 1)δ(ωk − ωk1 − ωk2 + ωk3)

× (gk − gk1 − gk2 + gk3) (6)

where the k1, k2 integrations are understood to be over an interval of 2π and k3 = k1 +
k2 − k mod 2π . Now make the high temperature, or equivalently, classical approximation of
eqnk ≈ eqnk + 1 ≈ kBT /h/ωk . The Boltzmann equation, namely the equality of (4) and (6),
then simplifies to

1

2
cot

1

2
k kB∇T/h/ = −(9/16π)

(
K2

4

/
K4

2

)
(kBT )4/h/2

×
∫

dk1

∫
dk2 δ(ωk − ωk1 − ωk2 + ωk3)(gk − gk1 − gk2 + gk3). (7)

By introducing a new deviation function χ that is just a rescaled g defined by

g = −(16π/9)
(
K4

2

/
K2

4

)
h/ωZB/(kBT )4kB∇T χ, (8)

the Boltzmann equation (7) becomes the dimensionless and parameter independent

1

2
cot

1

2
k = Ik(χ), (9a)

Ik(χ) =
∫

dk1

∫
dk2 ωZBδ(ωk − ωk1 − ωk2 + ωk3)(χk − χk1 − χk2 + χk3) (9b)

where again k3 = k1 + k2 − k mod 2π is understood. It is the invariant Boltzmann
equation (9a) and associated dimensionless collision integral (9b) that I will analyse in detail
in the sections below.

In section 2 the solution to the kinematical problem of 4-phonon scattering will be given
together with the evaluation of the kinematical integral

∫
dk1

∫
dk2 ωZBδ(ωk−ωk1−ωk2+ωk3).

In section 3 these results are extended by a local analysis of equation (9a) near k = 0. I find
that χ is singular at k = 0, the singularity being of the form of a sum of branch points of the
form kp with p = 2 (3m − 1)/3n and 2(3m + 1)/3n, m, n = 0, 1, 2, . . . , ∞. The amplitudes of
the leading terms are determined explicitly; for example

χ = A(2/k)2/3 + O(1/k2/9), A = (3/64)22/3/B(1/3, 1/3) (10)

where B(x, y) = �(x)�(y)/�(x +y) is the beta function. This local analysis is supplemented
with numerical work in section 4 to determine χ for all k. Incorporation of the dominant known
singular terms into the numerical approximation is crucial for obtaining rapid numerical
convergence. With about 60 singular terms plus a 20-term Chebyshev polynomial expansion
one can achieve equality of the two sides of equation (9a) to a few parts in 1012. A
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phenomenological fit to the essentially exact numerical solution is

χ ≈ A cos
1

2
k
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(
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2
k

)2/3

− 0.6820

(
sin

1

2
k

)4/3
]

, 0 < k < 2π

(11)

with A given in (10). The relative accuracy of (11) is better than 0.1% and gives the leading
divergence at small k exactly.

The divergence of χ at small k has implications for the thermal conductivity of the
4-phonon scattering model. For a chain of N particles, the energy density in mode k is
nkh/ωk/(Na) and the net energy current carried by this mode is Jk = ukδnkh/ωk/(Na).
In the classical regime δnk given in (5) reduces to (kBT /h/ωk)

2gk so we get Jk =
1
2 cot 1

2k(kBT )2gk/(Nh/) and on using (8),

Jk = −(16π/9N)
(
K4

2

/
K2

4

) ωZB

kBT 2
∇T

1

2
cot

1

2
kχk. (12)

The total energy current is Jε = (N/2π)
∫

dk Jk while the thermal conductivity κ , here
defined on a particle number basis as is ∇T , is the coefficient in Jε = −κ∇T . Thus our
formal expression for the thermal conductivity in the thermodynamic limit is

κ = ωZBkB

8

9

K4
2

(K4kBT )2

∫
dk

1

2
cot

1

2
kχk (13)

where the integration interval is 0 < k < 2π . Since the integral diverges at both endpoints
we confirm, the by now well-accepted expectation, that κ as a thermodynamically intensive
quantity in one-dimensional systems does not exist. However, (13) can still be used to estimate
the thermal conductivity of samples of finite length. Clearly our expression (12) of the mode
current Jk must be replaced for those k for which the mean free path exceeds the sample length.
Approximations appropriate in this case are discussed in section 5 and I conclude that the
conductivity of a large but finite sample of N particles is approximately given by

κ(N) ≈ 5ωZBkB(N/4π)2/5
[
(8A/9)K4

2

/
(K4kBT )2

]3/5
(14)

with A ≈ 0.014 04 as given in (10).

2. Kinematics

Peierls showed that on a linear chain with the simple dispersion law ωk = ωZB |sin 1
2k|

energy and momentum conservation laws prevent a single phonon from breaking up into
two or conversely two combining into one. That is, 3-phonon processes cannot change the
occupation number distribution. Consequently, cubic terms in the Hamiltonian can only lead
to effects of higher order than calculated in the present paper and this is the reason they were
not included in (1) and (2). For four phonons it is also the case that one phonon cannot break
up into three so that the only relevant 4-phonon process is the scattering k + k3 ↔ k1 + k2.
As a first step in determining the effect of such scattering one needs to find the combinations
allowed by energy and (pseudo) momentum conservation, namely∣∣sin 1

2k
∣∣ +

∣∣sin 1
2k3

∣∣ = ∣∣sin 1
2k1

∣∣ +
∣∣sin 1

2k2

∣∣, k + k3 = k1 + k2 mod 2π. (15)

Two of the four momenta are to be specified but with k and k3 fixed the solutions to (15)
for, say, k1 are not single valued. This can be seen simply by noting that if k1 is a solution
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Figure 1. The summed phonon frequencies, ω3 additive to a fixed ω and ω2 additive to a fixed
ω1, as functions of wave vector k/π and scaled by the zone boundary ωZB . The intersection point
marked by the vertical arrow is the non-trivial energy conserving solution to the scattering process
k + k3 ↔ k1 + k2. This is an example with 0 < k1 < k < 2π in which case it is always true that
|sin 1

2 k2| = sin 1
2 k2 and |sin 1

2 k3| = −sin 1
2 k3. For the solution marked by the horizontal arrow,

k1 and k2 are just a relabelled k and k3 combination.

then so is k2 and of course these will not in general be equal. The situation is simpler if k
and k1 are chosen as the independent momenta. One can also, without loss of generality,
restrict 0 < k < 2π and 0 < k1 < 2π so that both sin 1

2 k and sin 1
2 k1 are always positive. An

example of a graphical solution to (15) is shown in figure 1. One can infer from this figure
that there are always exactly two intersection points satisfying (15) on any interval of length
2π . However, for one of these k2 and k3 are just a relabelling of k and k1 and cannot change
phonon occupation numbers. That leaves only one solution as non-trivial and again from the
graphical solution in figure 1 it is clear that the total momentum k + k3 = k1 + k2 will always
lie between k and k1. If k1 > k, then

∣∣sin 1
2k3

∣∣ = sin 1
2 k3 and

∣∣sin 1
2k2

∣∣ = −sin 1
2k2 always. If

k1 < k the signs are reversed.
It is useful in solving for k2 and k3 to treat them symmetrically and write

k2 = 2ψ − (k1 − k)/2, k3 = 2ψ + (k1 − k)/2, (16)

thus recasting the problem into finding ψ . I return to this below but first note a useful bound
on ψ . The argument is that (16) can be written as k + k3 = k1 + k2 = 2ψ + (k + k1)/2 which
is to say that 2ψ is the total momentum minus the mean of k and k1. But k and k1 lie on
the interval (0, 2π ) so that the mean differs from k or k1 by less than ±π . Furthermore, we
concluded that the total always lies between k and k1. It follows that |2ψ | < π .

For the next step in the analysis take for definiteness k1 > k. Then one must find the
solution to sin 1

2k + sin 1
2k3 − sin 1

2k1 + sin 1
2k2 = 0 which can be written as

sin
(

1
4 (k1 + k) − 1

4 (k1 − k)
)

+ sin
(
ψ + 1

4 (k1 − k)
)

− sin
(

1
4 (k1 + k) + 1

4 (k1 − k)
)

+ sin
(
ψ − 1

4 (k1 − k)
) = 0. (17)

If (17) is expanded keeping the combinations 1
4 (k1 + k) and 1

4 (k1 − k) intact one finds directly

sin ψ = tan 1
4 (k1 − k) cos 1

4 (k1 + k) (18)
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k2
k3

k3

k2

0

0.5

1

1.5

2

ki/Pi

0.5 1 1.5 2
k1/Pi

Figure 2. The solutions to equations (19a)–(19c): ki/π, i = 2, 3, versus k1/π for fixed k/π =
0.01, 0.2, 0.5 and 1.0. The solutions are periodic and continuous and only the intervals (0, 2π )
are shown. The wave vector k3 vanishes both at k1 = 0 and k1 = k. The k2 vanishes only at
k1 = k while at k1 = 0 it takes on the value k2 = k. In the limit k → 0 the local maximum in k3 is
2π − 4k1/3 at k1 = 2π − 2k1/3 while the local minimum is 2π − (k/4)3 at k1 = k/2.

and from (18) the unique ψ since −π/2 < ψ < π/2. One can repeat the argument for k1 < k
and show that under all circumstances the solution for k2 and k3 is

k2 = 2ψ − (k1 − k)/2 mod 2π, k3 = 2ψ + (k1 − k)/2 mod 2π, (19a)

ψ = arctan
[
sin 1

4 |k1 − k| cos 1
4 (k1 + k)/�

]
, (19b)

� = [
sin 1

2k sin 1
2k1 +

(
cos 1

4 (k1 − k) cos 1
4 (k1 + k)

)2]1/2
(19c)

with the arctan function in (19b) understood to be on the principle branch to yield
−π/2 < ψ < π/2. While the change from (16) to (19a) is only a matter of aesthetics
to map k2 and k3 onto the common interval (0, 2π ), the constraints 0 < k < 2π and
0 < k1 < 2π are absolute and are maintained throughout this paper. Examples of the
solution (19a)–(19c) are shown in figure 2.

The Boltzmann equation integrals can now be simplified. For fixed k and k1,∫
dk2 ωZBδ(ωk − ωk1 − ωk2 + ωk3) = 2

/ ∣∣∣∣cos
1

2
k2 + cos

1

2
k3

∣∣∣∣
= 1

/ (
cos ψ cos

1

4
(k1 − k)

)
= 1/� (20)

where the first evaluated term is just the reciprocal of the derivative of the argument of
the δ-function. The relative sign between the two cosine functions follows from the
discussion preceding (16) that the combination ωk2 − ωk3 will always appear as the form
±(

sin 1
2 k2 + sin 1

2 k3
)
. The second equality in (20) follows from the definitions (16) while the

last depends on the solution (19b).
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The remaining integrations
∫

dk1/� . . . can be simplified by change(s) of variable. Note
that � can become very small if k approaches 0 and k1 approaches 2π . Hence for most
evaluations it is preferable to use �1 = 2π − k1 in which case (19c) becomes

� = [
sin 1

2k sin 1
2�1 +

(
sin 1

4 (�1 + k) sin 1
4 (�1 − k)

)2]1/2
. (21)

By far the most useful transformation is s = tan 1
4 �1 and with the definition t = tan 1

4k one
finds

� = (
cos 1

4k cos 1
4�1

)2√
D, D = 4st (1 + s2)(1 + t2) + (s2 − t2)2, (22)

and the collision integral (9b)

Ik(χ) =
∫

dk1/�(χk − χk1 − χk2 + χk3)

= 4(1 + t2)

∫ ∞

0
ds/

√
D(χk − χk1 − χk2 + χk3). (23)

Since D is a quartic polynomial in s, the kinematical part of the collision integral, namely

Kk =
∫

dk1/� = 4(1 + t2)

∫ ∞

0
ds/

√
D (24)

can be expressed exactly in terms of elliptic integrals and the result is given in the appendix.
However, for purposes of understanding the small momentum behaviour of the Boltzmann
equation a simpler approach is preferable. First note that D(s), for any t, has two negative real
roots and a complex pair. Specifically,

D = (s + s1)(s + s2)(s − a − ib)(s − a + ib) (25)

and for small t,

s1 = t3/4 + O(t5) = k3/256 + O(k5), s2 = (4t)1/3 + O(t) = k1/3 + O(k),

a ± ib = s2 exp(±iπ/3) + O(t) = k1/3 exp(±iπ/3) + O(k).
(26)

The numerical coefficients in (26) are of course specific to the dispersion law ωk = ωZB

∣∣sin 1
2 k

∣∣
for the nearest-neighbour model but the fact that D has structure at ∼k3 and ∼k1/3 arises simply
because the phonon dispersion curve deviates from linearity by a term of order k3. Hence one
can expect the qualitative features found here to be generic. In particular, any structure in
the deviation function χ at some small momentum scale k will be reflected in structure in the
evaluated collision integral at scales k3 and k1/3. That is, phonon collisions in the 4-phonon
model will redistribute phonons to these very specific higher and lower scales.

I conclude this section with an evaluation of the kinematic integral Kk in (24) for small k.
The leading term in Kk in the limit k → 0 can be obtained by setting D = 4st + s4 = sk + s4

and substituting s = (kσ )1/3. The result is

Kk ≈ 4
∫ ∞

0
ds/

√
(sk + s4) = 4/(3k1/3)

∫ ∞

0
dσ σ−5/6(1 + σ)−1/2

= 4/(3k1/3)B(1/6, 1/3) = (4/3)(4/k)1/3B(1/3, 1/3) (27)

where B(x, y) = �(x)�(y)/�(x + y) is the beta function. On Taylor expanding 1/
√

D

about this lowest order term as described in the appendix one can generate corrections whose
evaluation is very similar to that in (27). The result, based on analytical integration, is

Kk = (4/3)(4/k)1/3B(1/3, 1/3) − (4/9)(2k)1/3B(2/3, 2/3)

+ 0k + (88/243)(k/4)5/3B(1/3, 1/3) + O(k2) (28)
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which shows the gap between successive terms in Kk is a factor of k2/3 barring, possibly
accidental, zero coefficients. An exact summation of the series (28) valid for all 0 < k < 2π

is equation (A.10) in the appendix. While I do not use the exact representation in this paper
it is the integral result one needs for obtaining solutions to the Boltzmann equation in the
relaxation time approximation.

3. Small k asymptotics

Probably the most striking feature of the Boltzmann equation (9a) is the divergence of the
left, transport, side of the equation at small k as 1/k. This is a very strong constraint on
the form of the deviation function χ on the right, collision, side. Now we have already seen
in (28) in the previous section that the kinematical part of the collision integral, namely Kk, only
diverges as 1/k1/3 so that χ itself must diverge. We can guess, since χk Kk is one contribution
to Ik(χ), that χ ∝ 1/k2/3. There are also constraints of symmetry; since we are dealing with
a linearized Boltzmann equation in a thermal gradient, χ must be an anti-symmetric function
of k and because of periodicity, anti-symmetric about k = π as well.

In view of the above, I will suppose that the singular, non-analytic, part of χ can be
constructed from a superposition of functions of the form

Sχk(p) = cos 1
2k

(
sin 1

2k
)p

(29)

with, of course, p = −2/3 being one likely candidate. The simplest analytic function with the
correct symmetry is cos 1

2k sin 1
2k and it is reasonable to take the regular part of χ as

Rχk = cos 1
2k sin 1

2k × (orthogonal polynomial expansion). (30)

The numerical procedure involved in evaluating the contribution (30) to the collision integral
is discussed in the next section. But as already noted, this contribution cannot lead to anything
more singular than 1/k1/3 and therefore a local analysis in the vicinity of k = 0 based on (29)
suffices to obtain a significant part of the solution to the Boltzmann equation. I now describe
this local analysis.

The collision integral with (29) as integrand needs to be evaluated, at least in the
limit of small k. With the representation (23) for Ik(χ) these calculations are reasonably
straightforward and are outlined in the appendix. The results, adequate for our purpose here,
are

Ik(
Sχ(p)) = �β(p, q)kq + O(kr), (31)

β(p, p − 1/3) = 4

3

22/3

2p
B(1/3, 1/3), (31a)

β(p, 3p + 1) = 1/25p{2B(p + 1,−2p − 1) − B(p + 1, p + 1)}, (31b)

β(p, (p − 1)/3) = (4/3)2(2+p)/3{2B((2p + 1)/3, (1 − p)/3)

−B((1 − p)/3, (1 − p)/3)}, (31c)

β(p, p + 1/3) = (−4/9)
21/3

2p
B(2/3, 2/3), (31d)

β(p, (p + 1)/3) = (4/9)(5 + 2p)2(1+p)/3

{
2B((2p + 2)/3, (2 − p)/3)

− (1 − 2p)

(1 + p)
B((2 − p)/3, (2 − p)/3)

}
, (31e)
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β(p, p + 1) = 0, (31f )

and, given the six terms above, the remainder power in (31) is

r = min(1, p/3 + 1), p � −2/3. (32)

Equations (31b), (31c) are an explicit realization of the comments following (26). Namely,
structure on scale k is transferred to scales k3 and k1/3 which we see here as a power p in the
integrand becoming a power 3p (+1) and p/3 (−1/3) in the evaluated integral. We also see
in (31d), (31e), just as in the evaluation of Kk, correction terms that differ from the dominant
expressions by factor k2/3.

We can now conclude unambiguously that for the collision integral to reproduce the
divergence on the transport side of (9a),

χ = A Sχ(p = −2/3) + less singular terms, (33)

A = (3/64)22/3/B(1/3, 1/3), (34)

which is the result copied to (10). The amplitude A of the leading term in (33) is determined
from a combination of the amplitudes in (31a), (31b) but note that the presence of this term
also generates a singularity ∝ 1/k5/9. There is no corresponding term on the transport side of
the Boltzmann equation so this new divergence must be cancelled by another contribution to
χ . With this contribution included,

χ = A{Sχ(p = −2/3) − β(−2/3,−5/9)/β(−2/9,−5/9) Sχ(p = −2/9)

+ less singular terms}, (35)

but then there is another divergence to be cancelled. The result is a cascade of divergences
∝ kq and because q < −1/3 the local analysis uniquely determines the amplitudes in the
singular χ expansion. The formal infinite sum of all these contributions is our zeroth-order
approximation

χ ≈ (0)χ = A SX(p = −2/3), (36)

SX(p) =
∞∑

n=0

αn(p) Sχ(p/3n) (37)

with the αn(p) satisfying the recursion

αn+1(p) = −β(p/3n, p/3n+1 − 1/3)/β(p/3n+1, p/3n+1 − 1/3)αn(p), a0(p) = 1. (38)

The powers in the successive Sχ terms in (37) approach zero and this suggests a rather
intuitive physical picture—the thermal gradient generates a very large disturbance (i.e. power
law divergence) in the phonon distribution at small k but successive scattering events smooth
out this distribution and ultimately flatten it entirely.

The convergence of the series (37) needs to be explored with particular emphasis on
how to replace the infinite sum by a rapidly convergent sequence of approximants based on
finite sums. We begin with the recursion (38) and Taylor expand the gamma functions in the
defining equations for the β(p, q). This shows that the successive αn+1/αn ratios converge to
−1 exponentially in n; specifically,

−αn+1(p)/αn(p) = 1 + 2Bp/3n+1 + O(1/9n), B = 2ψ(1/3) − 2ψ(2/3) + ln(2) (39)

where ψ(x) is the digamma function. This exponential convergence implies convergence of
(−1) nαn(p) and from (39) we deduce that

αn(p) = C(−1)n[1 − Bp/3n + O(1/9n)] (40)
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where C is a constant. Furthermore, for finite k, Sχ(p/3n) = cos 1
2 k

[
1 + ln

(
sin 1

2 k
)
p/3n +

O(1/9n)
]

so that the individual terms in the sum (37) vary as

αn(p) Sχ(p/3n) = C(−1)n cos 1
2k

[
1 − (

B − ln
(
sin 1

2k
))

p/3n + O(1/9n)
]

(41)

which shows that replacing (37) by partial sums truncated at n = N is not going to form a
practical sequence of approximants. However we can use (41) to make a reasonable guess
for the truncation error in (37) and include this together with the partial sum to n = N. If we
consider only the terms explicitly shown in (41) then there are two series to consider. The
remainder series (−1)N+1(1 − 1 + 1 − · · ·) modified by any reasonable convergence device
will sum to 1

2 (−1)N+1 while the other (−1)N+1/3N+1(1 − 1/3 + 1/9 − · · ·) = 1
4 (−1)N+1/3N .

Including both sums gives the remainder

SX(p) −
N∑

n=0

αn(p) Sχ(p/3n) ≈ C(−1)N+1 cos
1

2
k

[
1

2
− 1

4

(
B − ln

(
sin

1

2
k

))
p/3N

]

≈ C(−1)N+1 Sχ

(
1
2p

3N

)[
1

2
−

1
4Bp

3N

]

≈ −αN(p) Sχ

(
1
2p

3N

)[
1

2
+

1
4Bp

3N

]
(42)

and all forms have error O(1/9N). The O(1/3N) correction can also be eliminated by utilizing
αN+1(p) in addition to αN(p) in the last expression in (42). The result is the Nth approximant,
correct to O(1/9N),

SX(p) =
(

N∑
n=0

αn(p) Sχ(p/3n)

)
+ (3αN+1(p) − aN(p))/8 Sχ

(
1
2p

3N

)
. (43)

Further refinement is possible but the convergence ∝ 1/9N is already sufficiently rapid that (43)
is numerically practical and is the approximant that has been used for all the numerical work
discussed in the following section.

To see what has been achieved and more importantly what remains to be done, I show in
figure 3 the relationships between the power p in the collision integral integrand and the power
q in the evaluated integral as given by (31a)–(31f ). The cascade defining SX(p = −2/3)

is readily apparent as are singularities in the evaluated collision integral we have not yet
cancelled. The most significant singularity is that at q = −1/3 which requires we add to χ a
single term with p = 0. The resulting change to (36) is

χ ≈ (1)χ = A

{
SX(p = −2/3) + 2−2/3 �3(2/3)

�3(1/3)

Sχ(p = 0)

}
. (44)

The leading singularity of the approximation (44) is now at q = 1/9 and to cancel this
singularity we can add terms with p = 4/9 or p = 4/3. There is no reason to exclude one
or the other and it will require a global analysis to determine the relative weights of the two
terms. Note however that if we add Sχ(p = 4/9) we will be generating a singularity at q =
−5/27 that needs to be cancelled. This is the start of another cascade and the formulae (37)
and (38) apply here as well; the result is that we should add, with some amplitude, SX(p = 4/9)

to (44). The ambiguity in amplitude is resolved if we choose to also add SX(p = 4/3) rather
than Sχ(p = 4/3). The former has no q = 1/9 singularity by construction and thus local
analysis imposes no constraint on its amplitude. On the other hand, local analysis now uniquely
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Figure 3. The six sloping lines labelled a, b, . . . , f are the relationships (31a)–(31f ) between the
exponent q characterizing the evaluated integral Ik(

Sχ) and the exponent p of the integrand Sχ(p).
The exponent q = −1 indicated by the arrow at the lower left is demanded by the transport side
of the Boltzmann equation. The vertical arrows indicate the powers of the three terms with p < 1
that are included with adjustable amplitudes in the variational numerical solution discussed in
section 4.

fixes the SX(p = 4/9) amplitude. In summary,

χ ≈ (2)χ = A

{
SX(p = −2/3) + 2−2/3 �3(2/3)

�3(1/3)

Sχ(p = 0)

− [β(−2/3, 1/9) + α1(−2/3)β(−2/9, 1/9)]

β(4/9, 1/9)

SX(p = 4/9)

+ a4/3
SX(p = 4/3)

}
(45)

where a4/3 is not determined by local analysis. The SX are defined in terms of the Sχ by (37)
and (38); a rapidly convergent sequence for approximating (37) is (43).

The local analysis described above illustrates the complicated nature of the singularity at
k = 0. Every correction term is going to be part of a cascade of singularities that require yet
more correction terms. Barring accidental cancellation, one can expect every power 2(3m −
1)/3n and 2(3m + 1)/3n with m, n = 0, 1, 2, . . . , ∞. The negative powers −2/3n are isolated
but converge to an accumulation point p = 0. The positive powers are dense on the real line
p � 0. Presumably the singularities are not equally important and (45) is an exact representation
of the negative powers and a first attempt at representing the most important positive powers.
As such it is reasonably successful. Numerical integration of the collision integral using (45)
with a4/3 = 0 shows that the ratio of the two sides of the Boltzmann equation (9a) has a
maximum deviation from unity at k = π and there by less than 6%. It is worth remarking that
numerical integration can be replaced by the analytic formula (31) together with the explicit
β(p, q) in (31a)–(31f ) if k is small enough.

To help visualize the effect of the truncation process that replaces (37) by (43) I show in
figure 4 the difference 1

2 cot 1
2 k − I ( (2)χ) on a logarithmic scale in k. Since the truncation

error in (43) is O(1/9N) and multiplies a k dependence that is approximately 1/k1/3 we can
conclude that for every increase N → N + 1 the minimum k above which the error is below
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Figure 4. The Boltzmann equation transport minus collision integral difference T − I =
1
2 cot 1

2 k − Ik(χ) versus log10(k/π) based on the approximate χ = (2)χ given in (45) with
a4/3 = 0. The curves at the left end have been scaled up by factor 100 for clarity. The four separate
diverging curves are the differences based on the cutoffs N = 11, . . . , 14 in (43).

some fixed value decreases by factor 93 or nearly 3 decades. This rapid convergence is seen
in figure 4 and confirms that very reasonable values for the cutoff N are adequate. A perhaps
surprising feature in figure 4 is the very small k at which there is a sign reversal followed by
a local maximum indicating that the asymptotic region in which the difference is reasonably
described by a single power law in k is limited to extremely small k. It is the confluence of
many closely spaced power laws that is responsible for the structure and to accurately model
this makes the numerical work somewhat more involved than one might have initially guessed.

4. Numerical solution

The method described here for the numerical solution to the Boltzmann equation (9a) is
variational—I start with (45) as an approximation for χ and add functions with undetermined
amplitudes. The amplitudes are then adjusted to minimize the relative error between the two
sides of (9a). The convergence depends crucially on the function choice. One complication
is that at least some of the included functions must adequately describe the undetermined
confluent singularities at k = 0. Another is that structure in χ is most likely to appear at small
k and not uniformly in k.

With regard to the first complication note that the approximation (45) for χ was designed
to eliminate the q = 1/9 singularity in the evaluated collision integral. A quick look at figure 3
shows the next singularity is at q = 7/27 and that q = 1/3 is an accumulation point of
singularities. As a practical matter one hopes that the infinity of power law singularities can
be adequately represented by a few effective power law singularities but I do not know of
a systematic way of optimizing the choice of exponents. For the numerical work described
below I have supplemented the term a4/3

SX(p = 4/3) in (45) by

a16/27
SX(p = 16/27) + a2/3

SX(p = 2/3) + a22/27
SX(p = 22/27) (46)

and this appears to be both a minimal and adequate set. The term p = 16/27 has been chosen
because it generates the q = 7/27 singularity; the term p = 2/3 because it generates q = 1/3
which is the accumulation point. The term p = 22/27 is there to fill the gap between p = 2/3



The solution to the 4-phonon Boltzmann equation for a 1D chain in a thermal gradient 1231

and the regular p = 1 described below. It is also chosen because it generates the same q =
13/27 as generated by the p = 4/9 that appears in (45). I have not systematically explored
variations of (46).

The term p = 4/3 in (45) already lies beyond p = 1 and exponents p > 4/3 are
ignored on the assumption that they will be reasonably approximated by the variational regular
contribution (30). But note the regular Rχ is just, in part, the special singular case Sχ(p = 1)

and will itself generate singularities at various q. From the explicit expression (31c) one finds
limit p → 1 β(p, (p − 1)/3) = 0 so that no ‘singular’ q = 0 term is generated and instead
the first singularity is at q = 2/3. Thus the combination of (30) and (46) is self-consistent in
the sense that no singularities at q < 7/27 are generated.

The complication of structure at small k is handled in two ways. First the Boltzmann
equation (9a) is sampled on a non-uniform grid of 359 points given by

k = kn = [2(n/360)3 − (n/360)4]π, n = 1, 2, . . . , 359. (47)

This makes the smallest k ≈ 1.3 × 10−7 and it is unlikely that we are missing any structure
below this value. Second, I use Chebyshev polynomials U2m(x) in (30) but I do not use the
uniform mapping x = k

π
− 1. Instead I set x = (2/π) arcsin

(
k
π

− 1
)

so as to effectively
stretch small k (and small 2π − k) relative to k ≈ π . Note that this implies the polynomial
expansion at small k is an expansion in

√
k so that the solution Rχ contains powers p = 1, 3/2,

2, 5/2 etc and is not ‘regular’ at all. The term p = 3/2 will generate a singularity with q =
1/6 that violates the constraint q � 7/27 we hoped to satisfy. It is possible that the variational
calculation will result in a zero amplitude for this term and I return to this point below.

The complete variational χ treated numerically is

χ ≈ (3)χ = A

{
SX

(
p = −2

3

)
+ 2−2/3�3

(
2

3

)/
�3

(
1

3

)
Sχ(p = 0)

−
[
β

(
−2

3
,

1

9

)
+ α1

(
−2

3

)
β

(
−2

9
,

1

9

)]/
β

(
4

9
,

1

9

)
SX

(
p = 4

9

)

+ a16/27
SX

(
p = 16

27

)
+ a2/3

SX

(
p = 2

3

)
+ a22/27

SX

(
p = 22

7

)

+ cos
1

2
k sin

1

2
k

M∑
m=0

bmU2m

((
2

π

)
arcsin

(
k

π
− 1

))

+ a4/3
SX

(
p = 4

3

)}
(48)

and the weighted square error (1 − 2 tan 1
2 k Ik(

(3)χ))2/sin 1
2 k summed over the k = kn

in (47) is minimized with respect to the parameters ap and bm. The weighting factor sin 1
2 k is

chosen to strike a balance between minimizing the absolute versus relative error between the
two sides of (9a). Changing this weighting has only a small effect on the rate of convergence
with respect to the cutoff M and is otherwise of little significance.

An example of the accuracy that is achieved by (48) is shown in figure 5(a) which gives
the relative error, scaled by 1012, between the two sides of the Boltzmann equation (9a) versus
the sampling index n in (47). The cutoffs for this case are M = 22 in (48) and N = 11
in the SX definitions (43). An important observation is that the oscillations in the deviation
are relatively uniform suggesting that the ‘stretching’ choice both in sampling and in the
orthogonal polynomials has been very reasonable. Figure 5(b) displays the relative error
versus log10(k/π) for small k and shows that the assumption of lack of structure below the
smallest k ≈ 1.3 × 10−7 in (47) is justified. Note that the data for figure 5(b) were generated
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Figure 5. (a) The scaled relative error RErr = 1012 × (1 − 2 tan 1
2 knIkn(χ)) for the solution

χ = (3)χ with parameters (49). The horizontal axis is the wave vector index n in (47). (b) The
same relative error as in (a) but versus log10(k/π) for small k. The crosses mark the index n = 1,
2, . . . , 8 in (47) and correspond to those kn that were used in the least-squares minimization.

by numerical integration of (48) but none of these data points was used in the variational
calculation other than those corresponding to the kn in (47). The coefficients for the fit in
figure 5 are

a16/27 = 3.187 327 505 368 166, a2/3 = −2.472 562 835 834 634,

a22/27 = 5.950 179 702 003 351, a4/3 = −2.367 232 977 843 359,

bm = − 3.303 888 356 255 044,−0.456 791 719 832 596, 0.083 486 787 842 960,

− 0.007 035 230 913 126, 0.000 275 510 608 921, 0.000 669 791 938 783,

0.000 151 287 256 424, 0.000 074 032 718 416, 0.000 035 487 814 215,

0.000 020 018 231 683, 0.000 010 682 539 894, 0.000 006 160 762 154,

0.000 003 538 876 077, 0.000 002 058 496 637, 0.000 001 182 722 509,

0.000 000 667 628 081, 0.000 000 364 455 390, 0.000 000 189 753 146,

0.000 000 092 282 338, 0.000 000 040 687 457, 0.000 000 015 480 270,

0.000 000 004 613 096, 0.000 000 000 844 587, m = 0, 1, . . . , 22. (49)
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The values of the ap are relatively stable with order but at best they represent the average
amplitudes over a range of exponent values. A particular ap can certainly not be construed as
a true indicator of the amplitude of Sχ (p). I have not investigated what happens when more
ap are included in (48) but dropping just the single a22/27 increases the root mean square error
by about three orders of magnitude. In addition the parameter stability with order is lost.
Thus the number of ap that has been kept does appear to be a minimal number.

The small k expansion of a Chebyshev U2m

((
2
π

)
arcsin

(
k
π

− 1
))

is

U2m = 2m + 1 − 2

3
(2m)3xk +

2

15
(2m − 1)5x

2
k

−
[

4

315
(2m − 2)7 +

π2

36
(2m)3

]
x3

k + · · · , xk =
√(

2k

π3

)
(50)

where ( )n is the Pochhammer symbol. Given the explicit values for bm in (49) the ‘regular’
contribution Rχ to (48) is approximately
Rχ = A cos 1

2 k sin 1
2 k[−4.291 58 + 0.1674 k1/2 + 5.175k − 47.7 k3/2 + · · ·]. (51)

The coefficients in this expansion drift with cutoff order M and the terms in [ ] become, for
example,

[−4.279 39 + 0.0649k1/2 + 10.015k − 196.6k3/2 + · · ·], M = 31,

[−4.276 99 − 0.0404k1/2 + 240.27k − 280 92k3/2 + · · ·], M = 40.
(52)

The strong variation in constants between (51) and (52) does not imply an inaccurate numerical
χ . The difference in ( (3)χ/A)

(
sin 1

2 k
)1/3

with M = 22 and M = 31 never exceeds 3 × 10−11;
the difference with M = 31 and M = 40 never exceeds 5 × 10−12. The variation is instead just
a characteristic feature of multiple exponential fitting—namely that such fitting is prone to
instability with many combinations of constants giving equally good approximations. There
is a consistency to (51) and (52) in that the coefficient of k1/2 which should rigorously be zero
has turned out to be small. This would almost certainly not have been the case had the more
singular terms as determined by the analytical analysis not been incorporated correctly.

Higher accuracy could no doubt be obtained but the present results already confirm the
analytically obtained picture in section 3 and illustrate the special features that one must watch
for in a numerical treatment. For those applications where high accuracy is not needed, I have
fit this solution to a much simpler functional form and obtained the result quoted in (11).

5. Physical consequences

As discussed in the introduction, the formal expression for the thermal conductivity (13)
diverges because phonon wave packets are allowed to travel arbitrarily large distances. This
of course is not possible in a finite system but including boundaries in the problem introduces
spatial dependence which will make the solution of the Boltzmann equation much more
difficult. On the other hand, one can give a simple but realistic estimate of the effect of the
boundaries by comparing phonon wave packets at the centre of a chain of N particles with
those in the infinite system.

The crucial observation is that any wave packet one detects is not representative of the
point of detection but rather of the point of origin. In the infinite system this is always, on
average, one mean free path distant. The number of packets of mean wave vector k one detects
is therefore characteristic of a temperature that differs from the local temperature by −λk ∇T

where λk is the mean free path, here measured in numbers of particles for consistency with
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the number representation used for ∇T . We can then deduce that the deviation δnk from
equilibrium is − ∂eqnk

∂T
λk∇T which is −λkkB∇T/h/ωk in the high temperature limit. But δnk

is known from the solution to the Boltzmann equation; combining δnk in terms of mean free
path with δnk = (kBT /h/ωk)

2gk , the high temperature limit of (5), and the definition of χ

from (8) gives

λk =
(

16π

9

)
K4

2

/
(K4kBT )2χk

/
sin

1

2
k , 0 < k < π. (53)

For those wave vectors representing phonon wave packets whose mean free path λk is less
than the distance N/2 from centre to boundary, the current Jk in (12) given by our solution of
the homogeneous Boltzmann equation is quite reasonable. On the other hand, our estimate of
the deviation δnk for those packets whose mean free path λk is greater than N/2 is too large by
roughly the factor 2λk/N which is just the ratio of the temperature difference over a distance
λk rather than N/2. We can incorporate this by replacing the purely formal total energy current
expression,

Jε = N

2π

∫
dk Jk, (54)

by the finite

Jε(N) = N

π

[∫ k∗

0
dk

(
N

2λK

)
Jk +

∫ π

k∗
dk Jk

]
(55)

where Jk is given in (12) and k∗ is that value in (53) for which λk = N/2. That is, we keep the
current Jk as given by the homogeneous Boltzmann equation but apply a correction factor for
the long wavelength modes that just cancels the overestimate in δnk .

Although in the general case of arbitrary N the integrals in (55) must be done numerically,
for large N the cutoff k∗ will be small and we can truncate χ to the leading term (10) and
replace the upper limit k = π in the second integral in (55) by k = ∞. Both integrals can then
be evaluated analytically; they have the same functional form and are in the ratio 2:3. The
result for the total is

Jε(N) ≈ −5ωZB

(
N

4π

)2/5
[ (

8A
9

)
K4

2

(K4kBT )2

]3/5

kB∇T (56)

and the corresponding thermal conductivity κ(N) = −Jε(N)/∇T is given in (14).
A recent simulation by Lee-Dadswell et al [7] of equilibrium fluctuations in a system

with periodic boundary conditions suggests that one is in the perturbative regime only for
K2

2

/
(K4kBT ) greater than about 100 to 200. We also know that boundary impedance severely

restricts the magnitude of the energy current; Rieder et al [8] have determined for a long
harmonic chain coupled stochastically to reservoirs at the two ends that

Jε � ωZBkB(T+ − T−)/(6
√

3) (57)

where T± are the reservoir temperatures. This should be approximately correct also for weakly
anharmonic chains so that the combination of (56) and (57) imposes a very severe constraint
on the possible temperature gradient ∇T. This in turn suggests how hard it will be to verify
the Boltzmann equation approach described here in a steady-state non-equilibrium molecular
dynamics simulation. Furthermore, the rather simplistic reduction of the distribution χ as given
in (48) or (11) for the infinite system to the energy current (56) or thermal conductivity (14)
for a finite system entails uncontrolled approximation so any numerical simulation could at
best be a partial confirmation of the Boltzmann equation approach.
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Definitive tests of the Boltzmann equation are more likely to be obtained by direct
comparison with equilibrium simulations [7]. This requires an extension of the present
calculation to the determination of the eigenvalue spectrum of the Boltzmann collision operator
and while probably feasible is beyond the scope of the present paper.

Appendix

For an exact evaluation of the kinematical integral (24), we need to extract from the
factorization

D = 4st (1 + s2)(1 + t2) + (s2 − t2)2 = (s + s1)(s + s2)(s
2 − 2sa + a2 + b2) (A.1)

not only s1, s2 with s1 < s2 but also

p1 = √(
s2

1 + 2s1a + a2 + b2
)
, p2 = √(

s2
2 + 2s2a + a2 + b2

)
. (A.2)

The substitution s = (p1s2τ
2 − p2s1)/(p2 − p1τ

2) puts (24) into the form

Kk = 8(1 + t2)√
(p1p2)

∫ τ∞

τ0

dτ√
[(1 + τ 2)2 − 4mτ 2]

,

τ0 =
√(

p2s1

(p1s2)

)
, τ∞ =

√(
p2

p1

)
, m = [(p1 + p2)

2 − (s1 − s2)
2]

(4p1p2)

(A.3)

and then with τ = tan 1
2ϕ into standard elliptic integral form giving

Kk = 4(1 + t2)√
(p1p2)

[2K(m) − F(2 arctan(τ0)|m) − F(2 arctan(1/τ∞)|m)]. (A.4)

The remaining I(χ ) integrals appear to be too complicated to do exactly and for purposes of
a small k expansion the s = tan 1

4�1 and t = tan 1/4k variable representation seems to be the
most useful. To gain experience with the necessary manipulations it is worth re-evaluating Kk

as a small k expansion and the result (A.4) is useful for providing a check on these calculations.
One important region of integration in

∫
ds/

√
D is the region s ∼ t1/3. With the proviso

that s scales as t1/3 the terms in the integrand can be rearranged or Taylor expanded with each
successive term smaller by factor t2/3. For example, we can rearrange D as given in (A.1) into

[4st + s4] + [4s3t] + [−2s2t2] + [4st3] + [4s3t3 + t4] (A.5)

where successive [ ] scale as t2n/3, n = 2, 3, . . . , 6. For the integrand in Kk we generate the
expansion

1/
√

D ≈ 1

(4st + s4)1/2
− 2s3t

(4st + s4)3/2
+ · · · (A.6)

which is convergent provided we restrict s to, say, s > Ct. Most integrals in this series can be
extended to 0 < s < ∞ with an error that is O(t2). Two important exceptions are∫ ∞

Ct

ds

(4st + s4)1/2
=

∫ ∞

0

ds

(4st + s4)1/2
− √

C + O(t2),

− t4

2

∫ ∞

Ct

ds

(4st + s4)3/2
= O(t2).

(A.7)

The integral that extends over 0 < s < ∞ in (A.7) is that in (27); other integrals in the
expansion in which 0 < s < ∞ are similar and easily evaluated. For the remaining region
0 < s < Ct where s ∼ t3 might give the dominant contribution we rearrange D as

[4st + t4] + [4st3] + [−2s2t2] + [4s3t] + [4s3t3 + s4] (A.8)
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and perform an expansion analogous to (A.6). In this case only the first term gives a
contribution that is not O(t2). It is∫ Ct

0

ds

(4st + t4)1/2
= − t

2
+

√
C + O(t2) (A.9)

and the sum of all terms is that reported in (28). The need to separate the integrals into s > Ct
and s < Ct makes the procedure messy and impractical above some order and makes the nature
of the series (28) difficult to ascertain. However we know from the behaviour of every term
in the exact Kk solution (A.4) that a series expansion with finite radius of convergence exists.
The result (28) suggests the series will have a very simple form and in principle analytic
differentiation of (A.4) could be used to generate higher order terms. In fact a numerical
approach is much more efficient if the structure of (28) is assumed and all one needs to do is to
find the rational coefficients in successive terms. Deducing rational coefficients from precise
floating-point numbers by their continued fraction representation is straightforward and the
extended series that is found this way leads to the conjecture that the exact answer is

Kk = 2

(
2

3

)3/2 {
z−1/6B

(
1

3
,

1

3

)
F

(
1

3
,

1

3
; 2

3
; z

)
− z1/6B

(
2

3
,

2

3

)
F

(
2

3
,

2

3
; 4

3
; z

)}
,

z = 2
(
sin 1

2k
)2

27

(A.10)

where F is the hypergeometric function. To go from numerical conjecture to proof it suffices
to show that (A.10) satisfies the same differential equation as (24) and this can be done as
follows. First note that (A.10) implies Kk = K(z) is a solution to the differential equation
[z2(1 − z)∂2/∂z2 + z(1 − 2z)∂/∂z − (1 + 9z)/36]K = 0. Applying this same differential
operator to the integral representation (24) yields an integral of the form

∫
ds N/D5/2 and it

remains to show that this vanishes. Now the numerator N in the integrand is a polynomial
in s of degree 8 and by explicit calculation one finds that it can be written as the sum of
terms 2nsn−1D − 3(sn + δn6t

6)∂D/∂s, 1 � n � 6, with coefficients that are functions of
t. Since the contribution of each of the six terms to the integral can be trivially shown
to vanish by an integration by parts, the identity of the hypergeometric (A.10) and elliptic
integral (24) representations is established. Unfortunately, neither the numerical nor analytical
manipulations above give any hint as to whether a transformation exists that gives (A.10)
directly from (24) or that might simplify the remaining integrals to which I now return.

The evaluation of Ik(χ) can be reduced by the k1 ↔ k2 symmetry to

Ik(χ) = χkKk − 8(1 + t2)

∫ ∞

0

dsχk1√
D

+ 4(1 + t2)

∫ ∞

0

dsχk3√
D

(A.11)

and we wish to determine the small k behaviour of this when χ = Sχ(p) given in (29). The
first term with the evaluation in (28) gives the contributions (31a), (31d), (31f ). To evaluate
the other two terms in (A.11) first note that both Sχk1 and Sχk3 can be easily expressed in
terms of s and t. For Sχk1 we have

Sχk1 = − cos
1

2
�1

(
sin

1

2
�1

)p

= −(2s)p(1 − s2)

(1 + s2)p+1
(A.12)

valid for all 0 < �1 < 2π while for Sχk3 we need to distinguish the cases k1 < k and k1 > k.
Consider the latter first in which case the definition (16) yields a k3 on the interval (0, 2π )
and hence a positive sin 1

2 k3 = sin ψ cos 1
4 (k1 − k) + cos ψ sin 1

4 (k1 − k). On using the
solution (19b), (19c) we get



The solution to the 4-phonon Boltzmann equation for a 1D chain in a thermal gradient 1237

sin
1

2
k3 = tan

1

4
(k1 − k)

[
� + cos

1

4
(k1 − k) cos

1

4
(k1 + k)

]

= cot
1

4
(�1 + k)

[
� + sin

1

4
(�1 + k) sin

1

4
(�1 − k)

]

=
(
cos 1

4k
)2

(1 + s2)

[
(
√

D + s2 − t2)(1 − st)

(s + t)

]
. (A.13)

A similar analysis for cos 1
2 k3 combined with (A.13) finally yields

Sχk3 = −(
cos 1

4k
)2p+2

(1 + s2)p+1

[
(1 − st)2(s − t)

(s + t)
− √

D

] [
(
√

D + s2 − t2)(1 − st)

(s + t)

]p

. (A.14)

It is not obvious whether a convergent series analogous to (A.10) exists for Ik(
Sχ(p)) but

even if the expansion leads to an asymptotic series, the low order terms are still meaningful.
To get those contributions that arise out of s ∼ t̃1/3 we supplement (A.6) with

Sχk1 = −(2s)p{1 − (p + 2)s2 + · · ·}, (A.15)

Sχk3 = −
[
(s2 +

√
(4st + s4))

s

]p {
1 − (p + 1)s2 − (p + 2)t/s − √

(4st + s4)

+
p
(

2s3t√
(4st+s4)

)
(s2 +

√
(4st + s4))

+ · · ·
}

(A.16)

in which only the first correction of relative magnitude t2/3 has been kept. The leading
contribution of the middle term in (A.11) is now, with 4t set to k and the substitution
s = (kσ )1/3,

8
∫ ∞

0
ds(2s)p/

√
(sk + s4) =

(
8

3

)
k(p−1)/3 2p

∫ ∞

0
dσ σ (2p−5)/6(1 + σ)−1/2

=
(

8

3

)
k(p−1)/32pB((2p + 1)/6, (1 − p)/3)

=
(

4

3

)
k(p−1)/32(2+p)/32B((2p + 1)/3, (1 − p)/3) (A.17)

which is one of the contributions in (31c). Note that the original integral in (A.11) is defined
for −1 < p < ∞ but the assumed ordering of terms to get to (A.17) has now limited the
range of validity to −1/2 < p < 1. The final result in (A.17) defines a function that can be
analytically continued outside this range and is correct in the sense that when it is added to
all other contributions in (31a)–(31f ) the correct total is obtained. It is just that when p lies
outside (−1/2, 1) what we have calculated in (A.17) is still a contribution but not necessarily
the dominant contribution. Similar comments apply to all other calculations in this appendix.

The leading contribution of the last term in (A.11), using (A.6) and (A.16) is

− 4
∫ ∞

0
ds

[(s2 +
√

(sk + s4))/s]p√
(sk + s4)

(A.18)

and the useful substitution now is s = k1/3(sinh θ)2/3 followed by exp(2θ) = 1 + σ .
Contribution (A.18) then becomes
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−(8/3)k(p−1)/3
∫ ∞

0
dθ

exp(pθ)

(sinh θ)(p+2)/3

= −(4/3)k(p−1)/32(2+p)/3
∫ ∞

0
dσ σ−(p+2)/3(1 + σ)−2(1−p)/3

= −(4/3)k(p−1)/32(2+p)/3B((1 − p)/3, (1 − p)/3) (A.19)

which is the remaining contribution to (31c). The first correction terms in (A.6) and (A.15),
(A.16) yield (31e) and although the calculation is quite involved there is nothing fundamentally
different.

There remains the term (31b) which arises from the integrand region s ∼ t3 in the integral
over Sχk1 and from the region k1 < k in the integral over Sχk3. For the former we have
an integral that is like (A.17) except that we must approximate

√
D by

√
(4st + t4). The

appropriate substitution is now s = t3σ/4 and we get the contribution

8
∫ ∞

0
ds(2s)p/

√
(4st + t4) = t3p+121−p

∫ ∞

0
dσ σp(1 + σ)−1/2

= k3p+1

27p+1
B

(
p + 1,−p − 1

2

)
= k3p+1

25p
2B(p + 1,−2p − 1).

(A.20)

For the k1 < k region, it is simpler to leave the integrand in the k and k1 variables and perform
the integration over k1 directly. The result for sin 1

2 k3 is like the first equality in (A.13); when
due attention is paid to signs we get

sin
1

2
k3 = − tan

1

4
(k − k1)

[
� − cos

1

4
(k − k1) cos

1

4
(k1 + k)

]

= − tan 1
4 (k − k1) sin 1

2k sin 1
2k1[

� + cos 1
4 (k − k1) cos 1

4 (k1 + k)
]

≈ −(k − k1)kk1

32
(A.21)

and the (small) negative value simply implies that on mapping to the interval (0, 2π ) we get
k3 = 2π − �3 with (small) positive �3. Then cos 1

2 k3 ≈ −1 and since � ≈ 1, the integral
over Sχk3 is just

−
∫ k

0
dk1

[
(k − k1)kk1

32

]p

= −k3p+1

25p

∫ 1

0
dσ [σ(1 − σ)]p

= −k3p+1

25p
B(p + 1, p + 1) (A.22)

giving the final contribution to (31b). This completes the description of the evaluation
of (31a)–(31f ).
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